
Divide and conquer
Lecture 06.02.

by Marina Barsky

Exhaustive Computation. Generate every possible candidate solution and
select an optimal solution.

Greedy. Create next candidate solution one step at a time by using some
greedy choice.

● Divide and Conquer. Divide the problem into non-overlapping
subproblems of the same type, solve each subproblem with the same
algorithm, and combine sub-solutions into a solution to the entire
problem.

● Dynamic Programming. Start with the smallest subproblem and combine
optimal solutions to smaller subproblems into optimal solution for larger
subproblems, until the optimal solution for the entire problem is
constructed.

● Iterative Improvement. Perform multiple iterations of the algorithm, at
each iteration moving closer to the optimal solution, until no further
improvement is possible.

Main algorithm design strategies

1. Break into non-overlapping subproblems
of the same type

2. Solve subproblems

3. Combine results

Divide-and-conquer technique

Divide: break apart

Conquer: solve
subproblems

✓

✓

✓ ✓

Combine

✓

✓ ✓

✓

✓

Sorting things

https://www.khanacademy.org/computing/computer-
science/algorithms/sorting-algorithms/a/sorting

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://www.toptal.com/developers/sorting-algorithms

https://www.khanacademy.org/computing/computer-science/algorithms/sorting-algorithms/a/sorting
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.toptal.com/developers/sorting-algorithms

Sorting Problem

Sorting Problem

Input: Sequence A of n elements
Output: Permutation A’ of elements in A

such that all elements of A’
are in non-decreasing order.

Why Sorting?

● Sorting data is an important step of many efficient

algorithms

● Sorted data allows for more efficient queries

(binary search)

Recap: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

split the array into two halves

merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

sort the halves recursively

2 3 5 7 1 6 7 13

split the array into two halves

merge the sorted halves into one array

merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

split the array into two halves

sort the halves recursively

Algorithm merge_sort (array A[1...n])

if n = 1: return A

m ← ⌊n/2⌋

B ← merge_sort(A[1 ... m])

C ← merge_sort(A[m + 1 ... n])

A′ ← merge(B, C)

return A′

Merging Two Sorted Arrays

Algorithm merge(B[1... p], C [1... q])

B and C are sorted
D ← empty array of size p + q
while B and C are both non-empty:

b ← the first element of B
c ← the first element of C
if b ≤ c:

move b from B to the end of D
else:

move c from C to the end of D
move what remains of B or C to the end of D
return D

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

Merge: example

2 3 5 7 1 6 7 13
i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2

i
j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6 7

j

B C

D

Copy what remains in C

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

B C

D

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: running time

Subproblem
size at each
level

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree

The height
of the tree
is...

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree

The height
of the tree
is log n

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree

Work at each level: all the work during merge

c*n

2 * cn/2

4*cn/4

8*cn/8

n*c

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree

Work at each level: O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Total: O(n)*log n = O(n log n)

Algorithm merge_sort (A[1...n])

if n = 1: return A

m ← ⌊n/2⌋

B ← merge_sort(A[1 ... m])

C ← merge_sort(A[m + 1 ... n])

A′ ← merge(B, C)

return A′

The running time of merge_sort(A[1 ... n])

is O(n log n).

Can we do better?

Merge Sort
The running time of MergeSort(A[1 . . . n]) is

O(n log n).

Lower bound
for Comparison-based sorting

A comparison-based sorting algorithm sorts
objects by comparing pairs of them.

Example
Selection sort and merge sort are comparison

based.

Definition

Lemma
Any comparison-based sorting algorithm

performs Ω(n log n) comparisons in the worst

case to sort n objects.

In other words

For any comparison-based sorting algorithm,

there exists an input array A[1 . . . n] such that

the algorithm performs at least Ω(n log n)

comparisons to sort A.

no

yes a2 < a1 < a3

Decision Tree
for deciding the order of 3 objects

a1 < a2?

a2 < a3?

yes

no

a2 < a3?
no

a1 ≤ a2 ≤ a3yes

a2 ≤ a3 ≤ a3yes

no a3 ≤ a2 ≤ a1

a1 < a3?

a1 ≤ a3 ≤ a2

a3 ≤ a1 ≤ a2

yes

no

a1 < a3?

Estimating max leaf depth
● The number of leaves ℓ in the tree must be n! (the total number of

permutations of n array elements)

● For the worst-case input the number of comparisons made is equal

to the maximum depth d of this tree

● The max depth of any node in a binary tree with ℓ leaves is at least

O(log ℓ): the minimum happens when the binary tree is complete.

In all other incomplete binary trees the max depth will be > log ℓ.

d ≥ log2 ℓ (or, equivalently, 2d
≥ ℓ)

● The number of leaves ℓ in our decision tree is n!

● Let’s show that:

log2(n!) = Ω(n log n)

Lemma

log2(n!) = Ω(n log n)

Proof

log2(n!) = log2(1 · 2 · · · · · n)

= log2 1 + log2 2 + · · · + log2 n

≥ log2 (n/2)+ · · · + log2 n

≥ (n/2) log2(n/2) = Ω(n log n)

Corollary
Any comparison-based sorting algorithm

performs (at least) Ω(n log n) comparisons on

the worst case input of size n.

This running time is optimal if we consider
sorting based on comparing pairs of
numbers

Merge Sort
The running time of MergeSort(A[1 . . . n]) is

O(n log n).

Sorting not based on comparison:
can be faster

1 2 3 4 5 6 7 8 9 10 11 12

2 3 2 1 3 2 2 3 2 2 2 1A

Example: sorting small integers

2 3 2 1 3 2 2 3 2 2 2 1A

Sorting small integers

2 7 3Count

1 2 3

Non-comparison based sorting

1 2 3 4 5 6 7 8 9 10 11 12

2 3 2 1 3 2 2 3 2 2 2 1A

Sorting small integers

2 7 3Count

1 2 3

Non-comparison based sorting

1 1 2 2 2 2 2 2 2 3 3 3

1 2 3 4 5 6 7 8 9 10 11 12

2 3 2 1 3 2 2 3 2 2 2 1A

Sorting small integers

2 7 3Count

1 2 3

Non-comparison based sorting

1 1 2 2 2 2 2 2 2 3 3 3

we have sorted these numbers

without actually comparing them!

1 2 3 4 5 6 7 8 9 10 11 12

Count Sort

● Assume that all elements of A[1 . . . n] are integers
from 1 to M.

● By a single scan of the array A, count the number

of occurrences of each 1 ≤ k ≤ M in the array A

and store it in Count[k].

● Using this information, fill in the sorted array A′.

Count_sort(A[1 ... n])

A'[1 . . . n] ← [0, . . . , 0] # to store sorted values of A
Count[1 . . . M] ← [0, . . . , 0]
for i from 1 to n:

Count[A[i]] ← Count[A[i]] + 1

number k appears Count[k] times in A
Pos[1 . . . M] ← [0, . . . , 0]
Pos[1] ← 1
for j from 2 to M :

Pos[j] ← Pos[j − 1] + Count[j − 1]

number k will occupy range [Pos[k]...Pos[k + 1] − 1]
for i from 1 to n:

A′[Pos[A[i]]] ← A[i]
Pos[A[i]] ← Pos[A[i]] + 1

Lemma

Provided that all elements of A[1 . . . n]

are integers from 1 to M, count_sort(A)

sorts A in time O(n + M).

Note
If M = O(n), then the running time is O(n).

Summary on sorting

● Merge sort uses the divide-and-conquer

strategy to sort an n-element array in time

O(n log n)

● No comparison-based algorithm can do this

(asymptotically) faster

● One can do faster if something special is

known about the input in advance (e.g., it

contains small integers)

Application of sorting:
points and segments
Activity

Points and Segments Problem

Given a set of points and a set of
segments on a line, compute, for
each point, the number of
segments it is contained in.

Input: A set of S segments and a set of P points.
Output: For each point - the number of
segments it is contained in.

1 0 2
1

Points and segments in one dimension

Sample input and output

Input:

(0, 5)

(7, 10)

1, 6, 11

Output:

1 0 0

2 segments

3 points

Number of covering segments for each point

0 1 2 3 4 5 6 7 8 9 10 11

Points and Segments Problem

Input: A set of S segments and a set of P points.
Output: For each point - the number of segments it
is contained in.

What a naïve algorithm would do?
What is the complexity of the naïve algorithm?

Let N = S + P
The goal: use O(N log N) sorting algorithm
After that, solve the problem in O(N) steps

Ideas? Can sorting help?

0 1 2 3 4 5 6 7 8 9 10 11

Ideas? Can sorting help? What should we sort?

0 1 2 3 4 5 6 7 8 9 10 11

Ideas? Can sorting help? What should we sort?

0 1 2 3 4 5 6 7 8 9 10 11

What if we could sort everything together?

(0, start), (1, point), (5, end), (6, point), (7, start), (10, end), (11, point)

Do you see a linear-time solution now?

