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Exhaustive Computation. Generate every possible candidate solution and 
select an optimal solution.

Greedy.  Create next candidate solution one step at a time by using some 
greedy choice.

● Divide and Conquer.  Divide the problem into non-overlapping 
subproblems of the same type, solve each subproblem with the same 
algorithm, and combine sub-solutions into a solution to the entire 
problem.

● Dynamic Programming.  Start with the smallest subproblem and combine 
optimal solutions to smaller subproblems into optimal solution for larger 
subproblems, until the optimal solution for the entire problem is 
constructed.

● Iterative Improvement. Perform multiple iterations of the algorithm, at 
each iteration moving closer to the optimal solution, until no further 
improvement is possible. 

Main algorithm design strategies



1. Break into non-overlapping subproblems 
of the same  type

2. Solve subproblems

3. Combine results

Divide-and-conquer technique



Divide: break apart



Conquer: solve 
subproblems

✓

✓

✓ ✓



Combine

✓

✓ ✓

✓



✓



Sorting things

https://www.khanacademy.org/computing/computer-
science/algorithms/sorting-algorithms/a/sorting

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://www.toptal.com/developers/sorting-algorithms

https://www.khanacademy.org/computing/computer-science/algorithms/sorting-algorithms/a/sorting
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.toptal.com/developers/sorting-algorithms


Sorting Problem



Sorting Problem

Input: Sequence A of n elements 
Output: Permutation A’ of elements in A

such that all elements of A’ 
are in non-decreasing order.



Why Sorting?

● Sorting data is an important step of many efficient 

algorithms

● Sorted data allows for more efficient  queries 

(binary search)



Recap: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

split the array into two halves



merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

sort the halves recursively

2 3 5 7 1 6 7 13

split the array into two halves



merge the sorted halves into one array

merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

split the array into two halves

sort the halves recursively



Algorithm merge_sort (array A[1...n])

if n = 1:  return A

m ← ⌊n/2⌋

B ← merge_sort(A[1 ... m])

C ← merge_sort(A[m + 1 ... n])

A′ ← merge(B, C )

return A′



Merging Two Sorted Arrays

Algorithm merge(B[1... p], C [1... q])

# B  and C  are sorted
D ← empty array of size p + q
while B and C are both non-empty:

b ← the first element of B
c ← the first element of C
if b ≤ c:

move b from B to the end of D
else:

move c from C to the end of D
move what remains of B or C to the end of D
return D



Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6



Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6



Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6



Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6



Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13



Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13



Merge: example

2 3 5 7 1 6 7 13
i j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1

i j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1 2

i
j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1 2 3

i j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1 2 3 5

i j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6

i j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6 7

j

B C

D

Copy what remains in C

k



Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

B C

D
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Merge sort: running time

Subproblem 
size at each 
level
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Merge sort: recursion tree

The height 
of the tree 
is...
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Merge sort: recursion tree

The height 
of the tree 
is log n



n/8  n/8  n/8  n/8 n/8  n/8  n/8  n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree

Work at each level: all the work during merge

c*n

2 * cn/2

4*cn/4

8*cn/8

n*c



n/8  n/8  n/8  n/8 n/8  n/8  n/8  n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree

Work at each level: O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Total: O(n)*log n = O(n log n)



Algorithm merge_sort (A[1...n])

if n = 1:  return A

m ← ⌊n/2⌋

B ← merge_sort(A[1 ... m])

C ← merge_sort(A[m + 1 ... n])

A′ ← merge(B, C )

return A′

The running time of merge_sort(A[1 ... n])

is O(n log n).



Can we do better?

Merge Sort
The running time of MergeSort(A[1 . . . n]) is 

O(n log n).



Lower bound 
for Comparison-based sorting

A comparison-based sorting algorithm sorts 
objects by comparing pairs of them.

Example
Selection sort and merge sort are comparison  

based.

Definition



Lemma
Any comparison-based sorting algorithm  

performs Ω(n log n) comparisons in the worst 

case to sort n objects.

In other words

For any comparison-based sorting algorithm,  

there exists an input array A[1 . . . n] such that 

the algorithm performs at least Ω(n log n) 

comparisons to sort A.



no

yes a2 < a1 < a3

Decision Tree 
for deciding the order of 3 objects

a1 < a2?

a2 < a3?

yes

no

a2 < a3?
no

a1 ≤ a2 ≤ a3yes

a2 ≤ a3 ≤ a3yes

no a3 ≤ a2 ≤ a1

a1 < a3?

a1 ≤ a3 ≤ a2

a3 ≤ a1 ≤ a2

yes

no

a1 < a3?



Estimating max leaf depth
● The number of leaves ℓ in the tree must  be n! (the total number of 

permutations of n array elements)

● For the worst-case input the number of comparisons made is equal 

to the maximum depth d of this tree

● The max depth of any node in a binary tree with ℓ leaves is at least 

O(log ℓ): the minimum happens when the binary tree is complete. 

In all other incomplete binary trees the max depth will be > log ℓ.

d ≥ log2 ℓ (or, equivalently, 2d 
≥ ℓ)

● The number of leaves ℓ in our decision tree is n!

● Let’s show that: 

log2(n!) = Ω(n log n)



Lemma

log2(n!) = Ω(n log n)

Proof

log2(n!) = log2(1 · 2 · · · · · n)

= log2 1 + log2 2 + · · · + log2 n

≥ log2 (n/2)+ · · · + log2 n

≥ (n/2) log2(n/2) = Ω(n log n)



Corollary
Any comparison-based sorting algorithm  

performs (at least) Ω(n log n) comparisons on 

the worst case input of size n.



This running time is optimal if we consider 
sorting based on comparing pairs of 
numbers

Merge Sort
The running time of MergeSort(A[1 . . . n]) is 

O(n log n).



Sorting not based on comparison:  
can be faster

1 2     3     4 5     6     7 8     9 10   11   12

2 3 2 1 3 2 2 3 2 2 2 1A

Example: sorting small integers



2 3 2 1 3 2 2 3 2 2 2 1A

Sorting small integers

2 7 3Count

1 2     3

Non-comparison based sorting 

1 2     3     4 5     6     7 8     9 10   11   12



2 3 2 1 3 2 2 3 2 2 2 1A

Sorting small integers

2 7 3Count

1 2     3

Non-comparison based sorting 

1 1 2 2 2 2 2 2 2 3 3 3

1 2     3     4 5     6     7 8     9 10   11   12



2 3 2 1 3 2 2 3 2 2 2 1A

Sorting small integers

2 7 3Count

1 2     3

Non-comparison based sorting 

1 1 2 2 2 2 2 2 2 3 3 3

we have sorted these numbers  

without actually comparing them!

1 2     3     4 5     6     7 8     9 10   11   12



Count Sort

● Assume that all elements of A[1 . . . n] are integers 
from 1 to M.

● By a single scan of the array A, count  the number 

of occurrences of each 1 ≤ k ≤ M  in the array A 

and store it in Count[k].

● Using this information, fill in the sorted array A′.



Count_sort(A[1 ... n])

A'[1 . . . n ] ← [0, . . . , 0] # to store sorted values of A
Count[1 . . . M ] ← [0, . . . , 0]
for i from 1 to n:  

Count[A[i]] ← Count[A[i ]] + 1

# number k appears Count[k] times in A
Pos[1 . . . M ] ← [0, . . . , 0]
Pos[1] ← 1
for j from 2 to M :

Pos[j ] ← Pos[j − 1] + Count[j − 1]

# number k will occupy range [Pos[k]...Pos[k + 1] − 1] 
for i from 1 to n:

A′[Pos[A[i ]]] ← A[i ]
Pos[A[i ]] ← Pos[A[i ]] + 1



Lemma

Provided that all elements of A[1 . . . n] 

are integers from 1 to M, count_sort(A) 

sorts A in time O(n + M).

Note
If M = O(n), then the running time is O(n).



Summary on sorting

● Merge sort uses the divide-and-conquer  

strategy to sort an n-element array in time 

O(n log n)

● No comparison-based algorithm can do  this 

(asymptotically) faster

● One can do faster if something special is 

known about the input in advance (e.g., it 

contains small integers)



Application of sorting:
points and segments
Activity



Points and Segments Problem

Given a set of points and a set of 
segments on a line, compute, for 
each point, the number of  
segments it is contained in.

Input: A set of S segments and a set of P points.
Output: For each point - the number of 
segments it is contained in.

1         0 2
1

Points and segments in one dimension



Sample input and output

Input:

(0, 5)

(7, 10)

1, 6, 11

Output:

1 0 0

2 segments

3 points

Number of covering segments for each point

0 1 2 3 4 5 6 7 8 9 10 11



Points and Segments Problem

Input: A set of S segments and a set of P points.
Output: For each point - the number of segments it 
is contained in.

What a naïve algorithm would do?
What is the complexity of the naïve algorithm?

Let N = S + P
The goal: use O(N log N) sorting algorithm
After that, solve the problem in O(N) steps



Ideas? Can sorting help?

0 1 2 3 4 5 6 7 8 9 10 11



Ideas? Can sorting help? What should we sort?

0 1 2 3 4 5 6 7 8 9 10 11



Ideas? Can sorting help? What should we sort?

0 1 2 3 4 5 6 7 8 9 10 11

What if we could sort everything together?

(0, start), (1, point), (5, end), (6, point), (7, start), (10, end), (11, point)

Do you see a linear-time solution now?


