Divide and conquer
Lecture 06.02.

by Marina Barsky

Main algorithm design strategies

v

v

Exhaustive Computation. Generate every possible candidate solution and
select an optimal solution.

Greedy. Create next candidate solution one step at a time by using some
greedy choice.

Divide and Conquer. Divide the problem into non-overlapping
subproblems of the same type, solve each subproblem with the same
algorithm, and combine sub-solutions into a solution to the entire
problem.

Divide-and-conquer technique

1. Break into non-overlapping subproblems
of the same type

2. Solve subproblems
3. Combine results

Divide: break apart

Conquer: solve

- \/

https://www.khanacademy.org/computing/computer-
science/algorithms/sorting-algorithms/a/sorting

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://www.toptal.com/developers/sorting-algorithms

Sorting things

https://www.khanacademy.org/computing/computer-science/algorithms/sorting-algorithms/a/sorting
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.toptal.com/developers/sorting-algorithms

Sorting Problem

Sorting Problem

Input: Sequence A of n elements
Output: Permutation A of elements in A
such that all elements of A
are in non-decreasing order.

Why Sorting?

e Sorting data is an important step of many efficient
algorithms

® Sorted data allows for more efficient queries
(binary search)

Recap: merge sort

712 |5 /31|7 (1311 |6
split the array into two halves

712 53 7 131 6

merge sort

712 |5 /31|7 (1311 |6
split the array into two halves

7 25 3 7 131 6
sort the halves recursively

2 357 1 6 713

merge sort

712 |5 /31|7 (1311 |6
split the array into two halves

7 25 3 7 131 6
sort the halves recursively

2 357 1 6 713

merge the sorted halves into one array
1 2 356 7 713

Algorithm merge _sort (array A[l...n])

ifn=1: return A

m & |n/2]

B & merge sort(A[l ... m])

C & merge_sort(A[m+1... n])
A & merge(B, C)

return A’

Merging Two Sorted Arrays
Algorithm merge(B[1... p], C [1... q])

#B and C are sorted
D &< empty array of sizep + g
while B and C are both non-empty:
b & the first element of B
¢ & the first element of C
if b<c:
move b from B to the end of D
else:
move ¢ from C to the end of D
move what remains of B or C to the end of D
return D

Merge sort: example

/2153

/

13

13

Merge sort: example

/215 37 131
7 21|53 / 13
/2] |53 13

Merge sort: example

/215 37 131
7 21|53 / 13
/2] |53 13
/12153 13

Merge sort: example

/ 317 131
/ |2 / 13
/2 3, /7113
/2 317 |13
2.7 5/ [/.13

Merge sort: example

/ 317 131
/ |2 7 1316
/2 3, /7113 6
/ |2 317 |13 6
217 5/ [/.13 6
2 |3 16 13

Merge sort: example

/ 37 131 6
/ |2 7 131 6
/2 3, /7113 (116
/ |2 371113 [1]6
217 5 [/113 |16
2 |3 1 6 7 13
1 5.6 7 7 13

Merge: example

B C
2 357 16
; J

Compare BJ[i] and CJj]

Merge: example

B C
2 357 16
; J

Compare BJ[i] and CJj]

Merge: example

2 3|57 16

J

Compare BJ[i] and CJj]

Merge: example

2 3|57 16

i j

Compare BJ[i] and CJj]

Merge: example

2 3|57 16

; J

Compare BJ[i] and CJj]

Merge: example

2 |3 |5

/

Compare BJ[i] and CJj]

i

6

13

.

Merge: example

2 |3 |5

/

Copy what remains in C

N

6

13

.

Merge: example

13

13

Merge sort: running time

&
Q
o

o

S

Q.
O

S
)

-
o
(q0)
Q
o+
q0)
Q
N
(95

o
>
@

Merge sort: recursion tree

t The height

of the tree

IS...

Merge sort: recursion tree

t The height

of the tree
islogn

Merge sort: recursion tree

Work at each level: all the work during merge

c*n
2 *cn/2
4*cn/4

8*cn/8

Merge sort: recursion tree
Work at each level: O(n)

o 0E 73 7

Total: O(n)*log n = O(n log n)

O(n)

O(n)

O(n)

O(n)

O(n)

Algorithm merge_sort (A[1...n])

ifn=1: return A

m & |n/2]

B & merge sort(A[l ... m])

C &< merge_sort(A[m+1... n])
A" & merge(B, C)

return A’

The running time of merge_sort(A[1 ... n])
is O(n log n).

Merge Sort

The running time of MergeSort(A[l1. .. n])is
O(n log n).

Can we do better?

Lower bound
for Comparison-based sorting

Definition
A comparison-based sorting algorithm sorts
objects by comparing pairs of them.

Example

Selection sort and merge sort are comparison
based.

Lemma

Any comparison-based sorting algorithm
performs Q(n log n) comparisons in the worst
case to sort n objects.

In other words

For any comparison-based sorting algorithm,
there exists an input array A[1 . . . n] such that
the algorithm performs at least Q(n log n)

comparisons to sort A.

Decision Tree
for deciding the order of 3 objects

a,<a,=< a
ves >
a, < a,? g < a7ﬁals a, < a,
1 3
a, < a,’?
yes |a,<a,< a,
no\,
a, < a,’
— Yes |4, = a3 = a;
no a,< a,< a,

Estimating max leaf depth

® The number of leaves { in the tree must be n! (the total number of
permutations of 1 array elements)

® For the worst-case input the number of comparisons made is equal
to the maximum depth d of this tree

® The max depth of any node in a binary tree with £ leaves is at least
O(log £): the minimum happens when the binary tree is complete.
In all other incomplete binary trees the max depth will be > log {.

d > log,t (or, equivalently, 29> t)

® The number of leaves £ in our decision tree is n!
® |et's show that:

log,(n!) = Q(n log n)

Lemma
log,(n!) = Q(n log n)

Proof
log,(n!) = log,(1 - 2 Co el
0g,(n!) = 10gy(1 - 2+~ - 1) o
= log, 2 + + log, n
> log, (n/2)+ - - - + log, n
. eroﬂ\\’ 2 2
e
of the
aemer" ‘ > (n/2) log,(n/2) = Q(n log n)

Corollary

Any comparison-based sorting algorithm
performs (at least) Q(n log n) comparisons on
the worst case input of size n.

Merge Sort

The running time of MergeSort(A[l1. .. n])is
O(n log n).

This running time is optimalif we consider
sorting based on comparing pairs of
numbers

Sorting not based on comparison:
can be faster

Example: sorting small integers
1 2 3 4 5 6 7 8 9 10 11 12

A|l2 3213|2232 2|2]|1

Non-comparison based sorting

Sorting small integers

1 2 3 4 5 6 7 8 9 10 11 12

A|l2 3213|2232 2|2]|1

1 2
Count 217 |3

Non-comparison based sorting

Sorting small integers

1 2 3 4 5 6 7 8 9 10 11 12

A|l2 3213|2232 2|2]|1

1 2

Non-comparison based sorting

Sorting small integers

1 2 3 4 5 6 7 8 9 10 11 12

A|l2 3 2|1 3|22|3 2|22 1

we have sorted these nhumbers
without actually comparing them!

Count Sort

e Assume that all elements of A[1. . . n] are integers
from 1 to M.

e By a single scan of the array A, count the number
of occurrences of each 1 <k <M in the array A
and store it in Count[Kk].

e Using this information, fill in the sorted array A.

Count sort(A[l... n])

All...n]<[0,...,0] # to store sorted values of A
Count[l.. M]<&[0,...,0]
forifrom 1 to n:

Countl[Ali]] € Count[A[i]] +1

number k appears Count[k] times in A
Pos[1... M]<[0,...,0]
Pos[1] < 1
forjfrom 2to M
Pos|[j] € Pos|[j - 1] + Count[j - 1]

number k will occupy range [Pos|k]...Pos[k + 1] — 1]
for i from 1 to n:

A'[Pos[A[i 1]] < Ali]

Pos[Ali]] € Pos[Ali]] +1

Lemma

Provided that all elements of A[1 . . . n]
are integers from 1 to M, count_sort(A)

sorts A in time O(n + M).

Note
If M = O(n), then the running time is O(n).

Summary on sorting

Merge sort uses the divide-and-conquer
strategy to sort an n-element array in time
A nlog n)

No comparison-based algorithm can do this
(asymptotically) faster

One can do faster if something special is
known about the input in advance (e.g., it
contains small integers)

Application of sorting:
points and segments

Activity

Points and Segments Problem

Given a set of points and a set of
segments on a line, compute, for
each point, the number of

segments it is contained in.

Points and segments in one dimension

Input: A set of S segments and a set of P points.
Output: For each point - the number of
segments it is contained in.

Sample input and output

Input:

0,5) = 2 segments
(7, 10)
,6, 11 3 points

Output:
1 00 Number of covering segments for each point

I N N O 2 O R TR T

Points and Segments Problem

Input: A set of S segments and a set of P points.
Output: For each point - the number of segments it
is contained in.

What a naive algorithm would do?
What is the complexity of the naive algorithm?

lLetN=S+P
The goal: use O(N log N) sorting algorithm
After that, solve the problem in O(N) steps

|deas? Can sorting help?

I N N N O 2 O R T T

|deas? Can sorting help? What should we sort!?

0 [1 (2 03 (4 |5 6 |7 |8 9 10 i1
|

|deas? Can sorting help? What should we sort!?

I N N N O 2 O R T T

What if we could sort everything together?

(0, start), (1, point), (5, end), (6, point), (7, start), (10, end), (11, point)

Do you see a linear-time solution now?

